Chapter 21 – Discontinuities and Limits

Some functions are defined for all values of \(x \). This means their graphs go on forever with no breaks. These are called continuous functions.

Examples:
\[
\begin{align*}
 f(x) &= 2x + 1 \\
 g(x) &= x^2 - 3
\end{align*}
\]

Other functions have some \(x \)-values that are excluded from their domains. Such functions will have breaks in their graphs at the \(x \)-values that don’t work. These functions are called discontinuous.

Examples:
\[
\begin{align*}
 f(x) &= \frac{2x+1}{x-3} \\
 g(x) &= \frac{x^2 - 5x + 6}{x-3}
\end{align*}
\]

Sometimes we can determine what the \(y \)-value of a function should be at a particular \(x \)-value, even if the function is discontinuous at that \(x \)-value. This expected \(y \)-value is called the limit. (Note that the limit might actually be the \(y \)-value or it might not!)
Limits can be calculated algebraically.

Example: Evaluate each limit algebraically:

a) \(\lim_{x \to 2} (3x + 7) = 3 \cdot 2 + 7 = 13 \)

b) \(\lim_{x \to 4} \frac{x^2 - x - 12}{x - 4} = \lim_{x \to 4} \frac{(x + 3)(x - 4)}{x - 4} = \lim_{x \to 4} (x + 3) = 4 + 3 = 7 \)

c) \(\lim_{x \to 0} \frac{x^3 - 5x^2 + 9x}{x} = \lim_{x \to 0} \frac{x(x^2 - 5x + 9)}{x} = \lim_{x \to 0} (x^2 - 5x + 9) = 9 \)

Some functions have a discontinuity, but the function does not approach a particular \(y \)-value at that point. In this case we say that the limit does not exist.
Chapter 21 – Introduction to the Derivative

- You already know that for a linear function the rate of change is constant, and this rate is represented by the slope of the line:

\[
\text{slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}
\]

- For a non-linear function, the rate of change varies at different x-values along the curve. The rate of change of a non-linear function at a particular point is represented by the slope of the tangent line to the curve at that point.

- Since the slope of the tangent line changes at different x-values, it is a function of x. The slope function is called the derivative.

- The derivative of a function \(f(x) \) is denoted \(f'(x) \) and it can be calculated using the following definition:

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.
\]

- Finding the derivative of a function from this definition is referred to as using first principles. Later you will learn easier methods for finding derivatives.

Example: Find the derivative of \(f(x) = x^2 \) using first principles.

\[
f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{h(2x + h)}{h} = 2x
\]

Example: Find the derivative of \(f(x) = x^3 - 2x + 3 \) using first principles.

\[
f'(x) = \lim_{h \to 0} \frac{(x + h)^3 - 2(x + h) + 3 - (x^3 - 2x + 3)}{h} = \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - 2x - 2h + 3 - x^3 + 2x - 3}{h} = \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2 - 2)}{h} = 3x^2 - 2
\]
Chapter 21 – Simple Differentiation Rules

➢ To differentiate a function means to find its derivative.

➢ When the original function is written using \(f(x) \) notation, the derivative is denoted \(f'(x) \), pronounced “f prime of \(x \).”

➢ When the original function is written using \(y \), the derivative is denoted \(\frac{dy}{dx} \), pronounced “d-y-d-x.”

➢ Finding derivatives of simple functions, like polynomials, is easy. Some rules for finding simple derivatives are summarized in the box below:

<table>
<thead>
<tr>
<th>Name of Rule</th>
<th>Function</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivative of a power of (x)</td>
<td>(f(x) = x^n)</td>
<td>(f'(x) = nx^{n-1})</td>
</tr>
<tr>
<td>Derivative of a constant</td>
<td>(f(x) = k)</td>
<td>(f'(x) = 0)</td>
</tr>
<tr>
<td>Derivative of a constant times a power of (x)</td>
<td>(f(x) = kx^n)</td>
<td>(f'(x) = knx^{n-1})</td>
</tr>
<tr>
<td>Derivative of a sum or difference of functions</td>
<td>(p(x) = f(x) \pm g(x))</td>
<td>(p'(x) = f'(x) \pm g'(x))</td>
</tr>
</tbody>
</table>

Example: Find the derivative of \(f(x) = 4x^3 - 7x^2 + 2x - 8 \).

\[
f'(x) = 12x^2 - 14x + 2
\]

Example: Find the derivative of \(f(x) = \frac{1}{x^2} + 6\sqrt{x} - 5 \).

\[
f'(x) = -2x^{-3} + 3x^{-\frac{1}{2}}
\]
Chapter 21 – Tangent Lines

➢ For a function \(f(x) \), the derivative \(f'(x) \) gives the slope of the tangent at a particular point. The point on the curve \(f(x) \) where the tangent is drawn is called the point of tangency.

➢ To find the equation of the tangent line to \(f(x) \) at a given \(x \)-value, follow these steps:

1) Find the \(y \)-coordinate of the point of tangency by plugging \(x \) into the function \(f(x) \).
2) Find the derivative \(f'(x) \).
3) Find the slope of the tangent \((m) \) by plugging \(x \) into the derivative \(f'(x) \).
4) Find the \(y \)-intercept \((b) \) of the tangent line by plugging \(x, y, \) and \(m \) into the general equation of a line, \(y = mx + b \).
5) Write the equation in \(y = mx + b \) form.

Example: Find the equation of the tangent to \(f(x) = 3x^2 - 5x + 3 \) at the point where \(x = 2 \).

\[
\begin{align*}
y &= f(2) = 3(2)^2 - 5(2) + 3 = 5 \\
f'(x) &= 6x - 5 \quad \rightarrow \quad m = f'(2) = 6(2) - 5 = 7 \\
y &= mx + b \quad \rightarrow \quad 5 = 2(7) + b \\
 &= 14 + b \\
 &= 14 + (-9) \\
 &= 5 \\
b &= -9
\end{align*}
\]

The equation of the tangent line is \(y = 7x - 9 \).
Chapter 21 – Derivatives and Tangent Lines on the GDC

- You can use your graphing calculator to find the derivative of a function at a given \(x \)-value and to find the equation of the tangent line at that point.

- The first step for both is to graph the function and set your viewing window so that the desired \(x \)-value is visible on the graph. Then…

…to find the derivative:
- From the graph window, go to the calculate menu (2nd – TRACE)
- Choose 6: dy/dx
- Type in the \(x \)-value
- The calculator will display the derivative at that point. (Remember sometimes the calculator has some rounding error!)

…to find the equation of the tangent:
- From the graph window, go to the draw menu (2nd – PRGM)
- Choose 5: Tangent(
- Type in the \(x \)-value
- The calculator will graph the tangent line at that point and display its equation. (Remember sometimes the calculator has some rounding error!)

Example: Use your GDC to the derivative of \(f(x) = 3\ln(x+5) \) at the point where \(x = -3 \).

The derivative at \(x = -3 \) is \(f'(-3) = 1.5 \).

Example: Use your GDC to find the equation of the tangent line to \(g(x) = \sqrt{3x-1} \) at the point where \(x = 1 \). (Round your answer to three decimal places.)
The equation of the tangent line is \(y = 1.061x + 0.354 \).
Chapter 21 – The Chain Rule

➢ Recall that two functions \(f \) and \(g \) can be combined by finding the composite function \(g(f(x)) \). Here \(f \) is called the inside function and \(g \) is called the outside function.

➢ The chain rule is used to find the derivative of a composite function. Let \(y = g(u) \) where \(u = f(x) \). Then \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \).

Example: Find the derivative of \(y = (1 - 3x)^4 \).

\[
\begin{align*}
y &= u^4 & u &= 1 - 3x \\
\frac{dy}{du} &= 4u^3 & \frac{du}{dx} &= -3 \\
\frac{dy}{dx} &= 4u^3(-3) = -12u^3 = -12(1 - 3x)^3
\end{align*}
\]

Example: Find the derivative of \(y = \sqrt{x^2 - 5x} \).

\[
\begin{align*}
y &= u^{\frac{1}{2}} & u &= x^2 - 5x \\
\frac{dy}{du} &= \frac{1}{2}u^{-\frac{1}{2}} & \frac{du}{dx} &= 2x - 5 \\
\frac{dy}{dx} &= \frac{1}{2}u^{-\frac{1}{2}}(2x - 5) = \frac{1}{2}(x^2 - 5x)^{-\frac{1}{2}}(2x - 5) &= \frac{2x - 5}{2\sqrt{x^2 - 5x}}
\end{align*}
\]
Chapter 21 – Product and Quotient Rules

- The **product rule** is used to find the derivative of a function formed by multiplying two functions together. Let \(y = uv \) where \(u \) and \(v \) are both functions of \(x \). Then \(\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \).

Example: Differentiate \(y = (x^2 + x + 1)(x^2 + 2) \).

\[
\begin{align*}
 u &= x^2 + x + 1, & v &= x^2 + 2 \\
 \frac{du}{dx} &= 2x + 1, & \frac{dv}{dx} &= 2x \\
 \frac{dy}{dx} &= (x^2 + x + 1)(2x) + (x^2 + 2)(2x + 1)
\end{align*}
\]

- The **quotient rule** is used to find the derivative of a function formed by dividing two functions. Let \(y = \frac{u}{v} \) where \(u \) and \(v \) are both functions of \(x \). Then \(\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \).

Example: Find the derivative of \(y = \frac{\sqrt{x}}{1 - 2x} \).

\[
\begin{align*}
 u &= x^{\frac{1}{2}}, & v &= 1 - 2x \\
 \frac{du}{dx} &= \frac{1}{2} x^{-\frac{1}{2}}, & \frac{dv}{dx} &= -2 \\
 \frac{dy}{dx} &= \frac{(1 - 2x)\left(\frac{1}{2} x^{-\frac{1}{2}}\right) - \left(\sqrt{x}\right)(-2)}{(1 - 2x)^2}
\end{align*}
\]
Chapter 21 – Normal Lines

- A normal line is a line perpendicular to the tangent line at the point of tangency.

- Recall that the slopes of perpendicular lines are opposite reciprocals. For example, the lines $y = \frac{1}{3}x + 7$ and $y = -3x + 9$ are perpendicular.

- Finding the equation of a normal line is very similar to finding the equation of the tangent line, just follow these steps:
 1) Find the y-coordinate of the point of tangency by plugging x into the function $f(x)$.
 2) Find the derivative $f'(x)$.
 3) Find the slope of the tangent (m_t) by plugging x into the derivative $f'(x)$.
 4) Find the slope of the normal (m_n) by taking the opposite reciprocal of the slope of the tangent.
 5) Find the y-intercept (b) of the normal line by plugging x, y, and m_n into the general equation of a line, $y = mx + b$.
 6) Write the equation in $y = mx + b$ form.

Example: Find the equation of the normal to $f(x) = 3x^2 - 5x + 3$ at the point where $x = 2$.

$$y = f(2) = 3(2)^2 - 5(2) + 3 = 5$$
$$f'(x) = 6x - 5 \quad \rightarrow \quad m_t = 7 \quad \rightarrow \quad m_n = -\frac{1}{7}$$
$$y = mx + b \quad \rightarrow \quad 5 = 2\left(-\frac{1}{7}\right) + b$$
$$5 = -\frac{2}{7} + b \quad \rightarrow \quad b = \frac{37}{7}$$

The equation of the normal line is $y = -\frac{1}{7}x + \frac{37}{7}$.
Chapter 21 – The second Derivative

- The second derivative is simply the derivative of the derivative. So to find the second derivative of a function, just differentiate twice!

- The second derivative is denoted $f''(x)$, pronounced “f double-prime of x” or $\frac{d^2y}{dx^2}$, pronounced “d two y d x-squared.”

Example: Find the second derivative of $f(x) = 5x^4 - 3x^2 + 7x$

$$f'(x) = 20x^3 - 6x$$
$$f''(x) = 60x^2 - 6$$

Example: Find the second derivative of $y = 8\sqrt{x^3}$

$$y = 8x^{3/2}$$
$$\frac{dy}{dx} = 8 \cdot \frac{3}{2} x^{-1/2} = 12x^{-1/2}$$
$$\frac{d^2y}{dx^2} = \frac{12}{2} \cdot \left(-\frac{1}{2}\right) x^{-3/2} = -6x^{-3/2}$$

- We will look at applications of the second derivative in the next chapter.
Chapter 22 – Motion in a Straight Line

- Suppose an object moves in a straight line from a starting point O, and that its position s is given as a function of time, t. The function $s(t)$ is called the displacement function for the object.

- The sign of the function s indicates the position of the object relative to the origin point:
 - If $s(t) = 0$ the object is at the origin point.
 - If $s(t) > 0$ the object is to the right of the origin point.
 - If $s(t) < 0$ the object is to the left of the origin point.

- The average velocity of the object between t_1 and t_2 is $\frac{s(t_1) - s(t_2)}{t_1 - t_2}$.

- The instantaneous velocity, or velocity function, is $v(t) = s'(t)$.

- The instantaneous acceleration, or acceleration function, is $a(t) = v'(t) = s''(t)$.

- $s(0)$, $v(0)$, and $a(0)$ give us the position, velocity, and acceleration of the object at time $t = 0$. These are called the initial conditions.

- You will often encounter the following phrases in motion problems, and you need to know how to interpret them:
 - “The object is at the origin point” means $s(t) = 0$.
 - “The object is stationary” means $v(t) = 0$.
 - “The object reverses direction” means $v(t) = 0$.
 - “The object reaches its maximum/minimum height” means $v(t) = 0$.
 - “The velocity is constant” means $a(t) = 0$.
 - “The object reaches its maximum/minimum velocity” means $a(t) = 0$.
Chapter 22 – Curve Properties

- For a function \(f(x) \), the derivative can be used to help determine the shape of the graph:

 - If \(f'(x) > 0 \) then \(f(x) \) is increasing.
 - If \(f'(x) < 0 \) then \(f(x) \) is decreasing.

- If \(f'(a) = 0 \) then the point where \(x = a \) is called a stationary point. A stationary point can be a local maximum, a local minimum, or a horizontal inflection point.

- A sign diagram for \(f'(x) \) can be used to determine the intervals of increase/decrease and to find and classify stationary points. The chart below shows how to interpret a sign diagram for \(f'(x) \):

<table>
<thead>
<tr>
<th>Sign Diagram</th>
<th>Type of Point</th>
<th>Graph</th>
</tr>
</thead>
</table>
| \[\begin{array}{c}
\nearrow & + & \searrow \\
\nearrow & a & \searrow
\end{array} \] \(f'(x) \) | Local maximum at \(x = a \). | ![Graph of Local Maximum] |
| \[\begin{array}{c}
\nearrow & - & \searrow \\
\nearrow & a & \searrow
\end{array} \] \(f'(x) \) | Local minimum at \(x = a \). | ![Graph of Local Minimum] |
| \[\begin{array}{c}
\nearrow & + & \searrow \\
\nearrow & a & \searrow
\end{array} \] \(f'(x) \) or \[\begin{array}{c}
\nearrow & - & \searrow \\
\nearrow & a & \searrow
\end{array} \] \(f'(x) \) | Horizontal inflection at \(x = a \). | ![Graph of Horizontal Inflection] |
Example: Find and classify all stationary points on the graph of
\(f(x) = 3x^4 - 8x^3 + 2 \), and state the intervals of
increase/decrease.

\[
\begin{align*}
 f'(x) &= 12x^3 - 24x^2 \\
 12x^3 - 24x^2 &= 0 \\
 12x^2(x - 2) &= 0 \\
 x &= 0 \quad \text{and} \quad x = 2
\end{align*}
\]

At (0, 2) \(f(x) \) has a horizontal inflection point.
At (2, -14) \(f(x) \) has a local maximum.
\(f(x) \) is decreasing when \(x < 2 \) and increasing when \(x > 2 \).

Example: Find and classify all stationary points on the graph of
\(f(x) = x^3 - 3x^2 - 9x + 5 \), and state the intervals of
increase/decrease.

\[
\begin{align*}
 f'(x) &= 3x^2 - 6x - 9 \\
 3(x^2 - 2x - 3) &= 0 \\
 3(x - 3)(x + 1) &= 0 \\
 x &= 3 \quad \text{and} \quad x = -1
\end{align*}
\]

At (-1, 10) \(f(x) \) has a local maximum.
At (3, -22) \(f(x) \) has a local minimum.
\(f(x) \) is increasing when \(x < -1 \), decreasing when \(-1 < x < 3 \),
and increasing when \(x > 3 \).
Chapter 22 – Inflections and Shape Type

- For a function \(f(x) \), the second derivative can be used to determine the concavity of the graph:
 - If \(f''(x) > 0 \) then \(f(x) \) is concave up.
 - If \(f''(x) < 0 \) then \(f(x) \) is concave down.

- An easy way to remember these facts:

\[
____ + + ____ - -
\]

- If \(f''(a) = 0 \) and the sign of \(f''(x) \) changes at \(x = a \), then the graph of \(f(x) \) has an inflection point at \(x = a \). However, to determine the type of inflection you must look at the sign of the first derivative:
 - If \(f'(a) = 0 \) then it is a horizontal inflection point.
 - If \(f'(a) \neq 0 \) then it is a non-horizontal inflection point.

- A sign diagram for \(f''(x) \) can be used to determine the concavity of \(f(x) \) and to find and classify inflection points.

Example: Find and classify all points of inflection on the graph of \(f(x) = x^4 - 4x^3 + 5 \), and state the intervals of concavity.

\[
f'(x) = 4x^3 - 12x^2 \quad \text{and} \quad f''(x) = 12x^2 - 24x
\]

\[
12x^2 - 24x = 0
\]

\[
12x(x - 2) = 0
\]

\[
x = 0 \quad \text{and} \quad x = 2
\]

\[
\begin{array}{ccc}
\circ & \circ & \circ \\
0 & 2 & t''(x)
\end{array}
\]

\[
f'(0) = 0 \quad \text{and} \quad f'(2) = -16 \neq 0
\]

At (0, 5) \(f(x) \) has a horizontal inflection point.
At (2, -11) \(f(x) \) has a non-horizontal inflection point.
\(f(x) \) is concave up when \(x < 0 \), concave down when \(0 < x < 2 \), and concave up when \(x > 2 \).
Chapter 22 – Rational Functions
Recall that an exponential function has the form \(y = ab^x \). In calculus, the exponential function with base \(e \) is of particular interest.

The number \(e = 2.718281828459045\ldots \) is an irrational constant. It is also the base of the natural logarithm function \(y = \ln x \).

The function \(y = e^x \) is very important in calculus because it has a unique property – it is its own derivative, that is, \(\frac{dy}{dx} = e^x \).

To differentiate a function of the form \(y = e^{f(x)} \), apply the chain rule:

\[
\frac{dy}{dx} = f'(x) \cdot e^{u(x)}
\]

Examples: Differentiate the following functions:

1) \(y = e^{5x} \)
2) \(y = e^{x^2-2x} \)
3) \(y = 2e^x - e^{-3x^2} \)

1) \(y = e^u \) \(u = 5x \)
\[
\frac{dy}{du} = e^u \quad \frac{du}{dx} = 5
\]
\[
\frac{dy}{dx} = 5 \cdot e^u = 5e^{5x}
\]

2) \(y = e^u \) \(u = x^2 - 2x \)
\[
\frac{dy}{du} = e^u \quad \frac{du}{dx} = 2x - 2
\]
\[
\frac{dy}{dx} = (2x - 2) \cdot e^u = (2x - 2)e^{x^2-2x}
\]

3) \(y = 2e^x - e^{-3x^2} \)
\[
\frac{dy}{dx} = 2e^x + 6e^{-3x^2}
\]
Chapter 23 – Derivatives of Logarithmic Functions

➢ The logarithmic function with base e is $y = \ln x$. The derivative of $y = \ln x$ is $\frac{dy}{dx} = \frac{1}{x}$.

➢ To differentiate a function of the form $y = \ln(f(x))$, apply the chain rule:

$$y = \ln u \quad u = f(x)$$

$$\frac{dy}{du} = \frac{1}{u} \quad \frac{du}{dx} = f'(x)$$

$$\frac{dy}{dx} = f'(x) \cdot \frac{1}{u} = f'(x) \cdot \frac{1}{f(x)} = \frac{f'(x)}{f(x)}$$

Example: Differentiate $y = \ln(x^2 + 2x)$

$$y = \ln u \quad u = x^2 + 2x$$

$$\frac{dy}{du} = \frac{1}{u} \quad \frac{du}{dx} = 2x + 2$$

$$\frac{dy}{dx} = \frac{2x + 2}{x^2 + 2x}$$

➢ Sometimes it is helpful to use properties of logarithms to expand a function first before you find the derivative.

Example: Differentiate $y = \ln\left(x(x^2 + 1)\right)$

$$y = \ln\left(x(x^2 + 1)\right) = \ln x + \ln(x^2 + 1)$$

$$\frac{dy}{dx} = \frac{1}{x} + \frac{2x}{x + 1}$$

Example: Differentiate $y = \ln\left(\frac{x^3}{(2-3x)^2}\right)$

$$y = \ln\left(\frac{x^3}{(2-3x)^2}\right) = \ln(x^3) - \ln(2-3x)^2 = 3\ln x - 2\ln(2-3x)$$

$$\frac{dy}{dx} = 3 \cdot \frac{1}{x} - 2 \cdot \frac{-3}{(2-3x)} = \frac{3}{x} + \frac{6}{2-3x}$$
The derivatives of trigonometric functions where \(x \) is measured in radians are as follows:

\[
\begin{align*}
 y &= \sin x \quad \frac{dy}{dx} = \cos x \\
 y &= \cos x \quad \frac{dy}{dx} = -\sin x \\
 y &= \tan x \quad \frac{dy}{dx} = \frac{1}{\cos^2 x} = \sec^2 x
\end{align*}
\]

The derivative of \(y = \sin (f(x)) \) can be found using the chain rule:

\[
\frac{dy}{dx} = f'(x) \cdot \cos u = f'(x) \cos (f(x))
\]

Similarly, the derivative of \(y = \cos (f(x)) \) is \(\frac{dy}{dx} = -f'(x) \sin (f(x)) \) and the derivative of \(y = \tan (f(x)) \) is \(\frac{dy}{dx} = \frac{f'(x)}{\cos^2 (f(x))} \).

Examples: Differentiate the following functions:

1) \(y = \sin x^2 \)
2) \(y = \tan 2x \)
3) \(y = \sin^2 x \)

1) \(\frac{dy}{dx} = 2x \cos x^2 \)

2) \(\frac{dy}{dx} = \frac{2}{\cos^2 2x} \)

3) \(\frac{dy}{dx} = 2 \sin x \cos x \) (using the chain rule)